

A Time Delay Line Neural Network for Modeling Ionospheric Disturbances Behavior

Anastasios Doulamis², Basil A. Massinas¹ and Demitris Paradissis¹

Email: adoulam@cs.ntua.gr, billmass@central.ntua.gr, dempar@central.ntua.gr

1: National Technical University of Athens
2: Technical University of Crete

- Ionospheric disturbances
- Neural networks structures
- Time delay neural networks
- supervised training
- Adaptable mechanisms

- This is a challenging research issue
 - t involves many dynamics, non-linearities and extrenal factors
- Such modeling is very importance in many applications,
 - efficient SAR signal processing through accurate noise modeling and removal,
 - monitoring of environmental evolution
 - geodynamics InSAR purposes.

- The use of linear approaches lead to a failure due to the fact that the models are very simple
 - They cannot capture the complexity and the abrupt changes of the real data
- Neural networks
 - Highly non-linear classifiers and predictors
 - They relate inputs and (by implicitly extracted concepts through them) they map these inputs to outputs

- Networks of processing units (neurons) with connections (synapses) between them
- Large number of neurons: 10¹⁰
- Large connectitivity: 10⁵
- Parallel processing
- Distributed computation/memory
- Robust to noise, failures

- Levels of analysis (Marr, 1982)
 - 1. Computational theory
 - 2. Representation and algorithm
 - 3. Hardware implementation
- Reverse engineering: From hardware to theory
- Parallel processing:

Fime Delay Neural networks

Their inputs are time series instead of features

- The procedure that consists in estimating the parameters of neurons so that the whole network can perform a specific task
- 2 types of learning
 - The supervised learning
 - The unsupervised learning
- The Learning process (supervised)
 - Present the network a number of inputs and their corresponding outputs
 - See how closely the actual outputs match the desired ones
 - Modify the parameters to better approximate the desired outputs

- The desired response of the neural network in function of particular inputs is well known.
- A "Professor" may provide examples and teach the neural network how to fulfill a certain task

- A time delay neural networks present static (constant) weights)
- We modify the weights of the network whenever the environmental conditions are changed
- For the adaptation, we re-initialize the training using the given a priori weights
- We trust more the current data sets rather than the old ones, without however forgetting them

Conclusions

- Dynamic modeling of ionospheric disturbances
- Time delay neural networks
- supervised training with validation data to avoid over fitting
- Adaptable mechanisms so that the weights of the network are adapted with respect to the environmental conditions